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Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated
with a generalized entropy and its application to the self-gravitating system

Masatoshi Shiino
Department of Applied Physics, Faculty of Science, Tokyo Institute of Technology, 2-12-1 Ohokayama, Meguro-ku, Tokyo, Ja

~Received 5 July 2002; published 23 May 2003!

Multidimensional nonlinear Fokker-Planck equations of mean-field type are proposed within the framework
of generalized thermostatistics to develop a general formulation of stability analysis of their solutions. Two
types of eigenvalue equations are studied. The nonlinear Fokker-Planck equations are shown to exhibit anH
theorem with a Liapunov functional that takes the form of a free energy involving generalized entropies of
Tsallis. The second-order variation of the Liapunov functional is computed to conduct local stability analysis
and the associated eigenvalue equation is derived for an arbitrary form of mean-field coupling potential.
Assuming quasiequilibrium for the velocity distribution, the reduced eigenvalue equation with space coordi-
nates alone is also obtained. The alternative type of eigenvalue equation based on the linearization of the
nonlinear Fokker-Planck equations is presented. Taking the mean-field coupling potential to be the gravita-
tional one, the nonlinear Fokker-Planck equation in terms of three-dimensional velocity and space coordinates
together with the framework of stability analysis is shown to be applicable to a mean-field model of self-
gravitating system. By solving the eigenvalue equation for the eigenfunction with 0 eigenvalue, the occurrence
of stability change of the equilibrium probability density with spherical symmetry is discussed.
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I. INTRODUCTION

Fokker-Planck equations~FPEs! are very useful for study-
ing dynamical as well as equilibrium statistical behaviors
stochastic systems and physical systems in contact with
reservoirs. They usually take the form of a linear mas
equation governing the time evolution of the probability de
sity of a system with Markovian dynamics. The approach
the uniquely determined equilibrium or stationary probabil
density is ensured by anH theorem@1–6#. TheH functional
or Liapunov functional taking the form of Kullback-Leible
divergence@8# or relative entropy is closely related to th
concept of free energy@6,7#. Such a situation involving anH
theorem makes the FPE a smart mathematical model al
ing for a satisfactory stochastic description of irreversi
processes of physical systems.

Recently, Fokker-Planck equations that are different fr
the standard type are becoming the subject of an inte
research@9–35#. Among them are nonlinear Fokker-Planc
equations~NFPEs!, which are classified into the ones ass
ciated with nonlinear diffusion@36–40# and those of mean
field type.

The NFPEs with a nonlinear diffusion term, which ha
been proposed in connection with generalized thermost
tics developed by Tsallis@41–43#, are closely related to the
generalized nonextensive entropies@41–43#. One of such
NFPEs reads@25#

]p

]t
52

]

]x S 2
]f

]x
pD1D

]2

]x2
pq. ~1.1!

Its equilibrium solution takes the form of Tsallis equilib
rium distribution of the first choice@41,43#,

Peq~x!5$~Dqb!21@12b~q21!f~x!#%1/~q21!, ~1.2!
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which is given by applying the maximum entropy princip
for the generalized entropy@41–43#,

S[
1

q21 F12E pqdxG . ~1.3!

The relationship between such NFPE~we will call it the
NFPE with a generalized entropy! and the generalized en
tropy has been studied in detail by several auth
@25,30,35#. It has been found that the NFPE with a gener
ized entropy proposed as an extension of the standard
bears close resemblance to the latter with respect to the
vergence and stability properties involving anH theorem
@30,35#: an H theorem holds true to ensure uniqueness a
stability of its equilibrium solution and the Liapunov func
tional takes the form of free energy based on the general
entropy. In the case of Eq.~1.1!, for example, the Liapunov
functional is given by@30#

F5U2DS5E fp dx2
D

q21 F12E pqdxG ~1.4!

and according to theH theorem theF monotonically de-
creases with time to approach its equilibrium value

Feq52DE peq
q ~x!dx1

1

q21 S 1

b
2D D . ~1.5!

Furthermore, the thermodynamic relations arising fro
the Legendre transform structure hold regarding the equ
rium free energyFeq @31#:

]Feq~D,h!

]D
52S, ~1.6!
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]Feq~D,h!

]h
52^x&peq

[2E xpeq~x;D,h!dx, ~1.7!

where Feq(D,h) is defined for the equilibrium distribution
~1.2! of NFPE~1.1! with f replaced byf2hx. It should be
noted that Eqs.~1.6! and ~1.7! together with Eq.~1.4! will
imply that the first choice of generalized thermostatistics
Tsallis makes sense withD playing the role of temperatur
@30#. In other words, it is due to the thermodynamic relatio
~1.6! and~1.7! as well as the dynamic level definition ofF of
Eq. ~1.4! yielding anH theorem that theF becomes the prop
erly defined free energy associated with entropy~1.3!. Then
the corresponding NFPE~1.1!, which is specific to the en
tropy, makes sense in that the maximal entropy principle
determining an equilibrium distribution can be extend
naturally to a dynamic level prescription for obtaining
based on the corresponding generalized canonical ense
consistent with the thermodynamic stability.

In contrast to the above mentioned type of NFPE, wh
is free from the occurrence of bifurcations in spite of
nonlinearity, another type of NFPEs that are based on
nonlinearity arising from mean-field-type feedback effect c
exhibit bifurcation phenomena. The simplest one of su
NFPEs is given by@11,12,14,15#

]p

]t
52

]

]x F S x2x31«E xp dxD pG1D
]2

]x2 p, ~1.8!

which is derived in the thermodynamic limit for a mean-fie
coupled Langevin equation system. Such a mean-field t
of NFPE is quite convenient to observe the effect of noise
a variety of cooperative phenomena of coupled syste
@9–23# and to systematically study equilibrium as well
nonequilibrium phase transitions@18–23#.

The problem of phase transitions within the framework
Tsallis thermostatistics is considered to be worth studyin
have recently proposed a double nonlinear Fokker-Pla
equation~DNFPE! @31,32# that is obtained by introducing
such a mean-field-type nonlinear term as considered in
~1.8! into the NFPE~1.1!,

]p

]t
52

]

]x F S 2
]f

]x
1«E xp dxD pG1D

]2

]x2 pq, ~1.9!

to study bifurcation phenomena within the context of conv
gence to equilibrium solutions involving their global and l
cal stability.

It was found that whenf(x) is chosen to be a double we
potentialf(x)52(x2/2)1(x4/4), the system characterize
by a power-law-type equilibrium probability density~1.2!
exhibits a pitch-fork bifurcation in a similar manner to th
case of the standard mean-field model based on Eq.~1.8!, as
the control parameterD is varied. Stability analysis was con
ducted on the basis of calculating the second-order varia
of the free energy functional serving as a Liapunov fun
tional @31#.

It will be of interest to extend the above mention
DNFPE to study behaviors of a wide class of DNFPE with
more general type of mean-field coupling@32# than the fer-
05611
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romagnetic coupling. Furthermore, it will also be of value
attempt to find physical systems to which the NFPE
DNFPEs can be applied to cope with difficulties encounte
with use of the standard Boltzmann-Gibbs entropy.

The aim of this paper is twofold: one is to study multid
mensional NFPEs of mean-field type associated with ge
alized entropies, for the purpose of developing stabi
analysis for the case with a general type of mean-field
tential rather than the ferromagnetic coupling used in E
~1.9!. Second, I want to apply the results obtained to stud
mean-field model of a self-gravitating system@44–53#.

The approach based on Tsallis thermostatistics to
problem of a self-gravitating system was first made by Pl
tino and Plastino@48#. They applied Tsallis’s formalism to
the problem of stellar polytropes, which was first studied
Kelvin @49# and dealt with in detail by Chandrasekher@50#,
and discussed the relationship between the indexq and the
stellar polytrope index. They noted that the standard tre
ment based on the Boltzmann-Gibbs entropy, in which ma
mizing the entropy is performed with the constraints im
posed by conservation of mass and energy, breaks down
divergence of mass.

Quite recently, stability analysis required for the max
mum entropy principle has been conducted within the fram
work of Tsallis thermostatistics by Taruya and Sakaga
@52#. They reported the occurrence of instability for pol
trope indexn larger than 5.

Imposing constraints of mass and energy for maximiz
a certain entropy corresponds to taking the microcanon
ensemble approach to the problem of a self-gravitating s
tem, where some spatial confinement of particles is usu
required. Then a problem arises of what will happen to
case of taking the canonical ensemble approach. In this c
one deals with the free energy rather than the entropy it
by viewing the parameter playing the role of temperature
a fixed control parameter. When taking advantage of Tsa
equilibrium distribution~1.2! exhibiting high energy cutoff
with q.1, it will become possible to investigate the proble
by employing the minimum free energy principle under t
constraint of mass alone without considering any spatial c
finement.

To be more precise, the mean-field model for a se
gravitating system, which will turn out to constitute the pro
lem of stellar polytropes in the microcanonical and canoni
ensemble approaches, will be formulated within the cont
of generalized canonical ensemble approach as follows.

Consider the energy@48#

Etot5
1

2 E uW 2p~uW ,xW !d3uW d3xW1
1

2 E G~xW !p~uW ,xW !d3uW d3xW

~1.10!

with

G~xW !52kE p~uW ,zW !

uxW2zWu
d3uW d3zW, ~1.11!
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wherep(uW ,xW ) denotes a probability density andk the gravi-
tational constant. Taking the total mass to be unity, the pr
lem is the variational one to minimize the free energyF
5Etot2DS under conservation of probability.

In the present study we take the entropyS to be given by
Eq. ~1.3! for simplicity.

We show that an appropriately taken multidimensio
DNFPE with the gravitational potential for the mean-fie
coupling turns out to work in consistence with undertaki
the study based on the above mentioned approach. The
energy, which is claimed to decrease with time in accorda
with H theorem, is to be locally minimized for an equilib
rium density to be relevant~stable!.

The paper is organized as follows. In Sec. II, we pres
the simplest model of multidimensional DNFPEs of mea
field type within the context of generalized thermostatisti
Linearizing the DNFPE around its equilibrium solution w
obtain an eigenvalue equation to discuss the structure o
0-eigenvalue function~s!. An H theorem is shown to hold by
taking the free energy as the Liapunov functional and
second-order variation is obtained. In Sec. III, the stabi
analysis based on the second-order variation of the Liapu
functional is developed further for a more realistic ca
where the NFPE has physical variables denoting space c
ou

ra
is
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dinates and velocity in the three-dimensional physical spa
Eigenvalue equations corresponding to the second-o
variation of the Liapunov functional are derived. In Sec. I
we deal with the second-order variation by restricting a p
turbation of the probability density to the subspace includ
the eigenfunction with 0 eigenvalue, which corresponds
considering quasiequilibrium for the velocity distributio
We present the reduced eigenvalue equation with space
ordinates alone. In Sec. V, taking the mean-field coupl
potential to be the gravitational one we show that the n
linear Fokker-Planck equation together with the framewo
of stability analysis in Sec. III can be applied to a mean-fie
model of self-gravitating system. We solve the eigenva
equation to obtain its eigenfunction with 0 eigenvalue for t
purpose of investigating the occurrence of stability change
the equilibrium probability density with spherical symmetr
In Sec. VI, we give a summary and discussion.

II. MULTIDIMENSIONAL DOUBLE NONLINEAR
FOKKER-PLANCK EQUATION AND H THEOREM

As the simplest case of multidimensional systems, we fi
consider a double nonlinear Fokker-Planck equation of
form
]p~ t,x,y!

]t
52

]

]x S 2
]f

]x
p~ t,x,y! D1D

]2

]x2 p~ t,x,y!q

2
]

]y F S 2
]f

]y
2E E ]

]y
V~y,z!p~ t,x,z!dx dzD p~ t,x,y!G1D

]2

]y2 p~ t,x,y!q, ~2.1!
lib-

the
wheref(x,y) represents a general potential function,V(y,z)
another potential corresponding to a mean-field type c
pling, andD a positive constant.

Defining

V„x,y,p~ t,• !…[f~x,y!1E E V~y,z!p~ t,x,z!dx dz,

~2.2!

J1@p#52
]V

]x
p2D

]

]x
pq, ~2.3!

J2@p#52
]V

]y
p2D

]

]y
pq, ~2.4!

we can rewrite Eq.~2.1! as

]p

]t
52S ]J1@p#

]x
1

]J2@p#

]y D , ~2.5!

which implies conservation of probability under the natu
boundary condition or an analogous one that ensures van
ing of the probability current on the boundary. A functionpeq
that satisfies
-

l
h-

V„x,y,peq~• !…5
Dqbpeq~x,y!q2121

~12q!b
~2.6!

with b denoting some constant, turns out to be an equi
rium solution to Eq.~2.1! because it yields

J1@peq#5J2@peq#50. ~2.7!

We can formally solve forpeq,

peq~x!5$~Dqb!21@12b~q21!V„x,y,peq~• !…#%1/~q21!,
~2.8!

whereb is determined by normalization condition. SinceV
containspeq, uniqueness and stability of thepeq, in general,
cannot be expected@31,32#.

Linear stability analysis

The approach ofp(t,xW ,yW ) to the equilibrium solution can
be examined by the linear stability analysis. We linearize
DNFPE ~2.1! around the equilibrium solution~2.8! by put-
ting dp5p2peq. Noting Eqs.~2.3!, ~2.4!, and~2.6! we ob-
tain
8-3
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]dp

]t
52

]

]x
F S Dq

]

]x
peq

q21

q21
D dpG1Dq

]2

]x2
peq

q21dp

2
]

]y
F S Dq

]

]y
peq

q21

q21
D dpG1Dq

]2

]y2
peq

q21dp

1
]

]y FpeqE ]

]y
V~y,z!dp~ t,x,z!dx dzG . ~2.9!

Rewriting this equation and putting dp(t,x,y)
5const3exp(2lt)f(x,y), we obtain the eigenvalue equatio

2l f ~x,y!5DqpeqS ]2

]x2 1
]2

]y2D @peq
q22f #

1peq

]2

]y2 E V~y,z! f ~x,z!dx dz

1DqS ]peq

]x

]

]x
~peq

q22f !1
]peq

]y

]

]y
~peq

q22f ! D
1

]peq

]y

]

]y E V~y,z! f ~x,z!dx dz. ~2.10!

Stability of the equilibrium solution is ensured by the co
dition that all of the eigenvaluesl be positive. The eigen
value l50 is of particular interest, since the occurrence
stability change of the solutions is inferred from the 0 cro
ing of the smallest eigenvalue as a control parameter likD
is changed. The eigenvalue equation~2.10!, however, has
always 0 eigenvalue irrespective of values of the parame
as can be seen below.

The equilibrium densities~2.8! containing the integration
constantb constitute a family of fixed point solutions of th
DNFPE, unless normalization is considered. This impl
that eigenvalue equation~2.10! always yields 0 eigenvalue
Indeed, according to this observation we can search for
05611
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eigenfunction~s! with 0 eigenvalue. Taking the differential o
Eq. ~2.6! with respect to a change inb, we obtain

Dq peq
q22dp52E E V~y,z!dp~x,z!dx dz2

1

12q
dS 1

b D .

~2.11!

The dp satisfying this equation should be the eigenfun
tion with l50. Multiplying both hands of Eq.~2.11! by the
gradient operator, we obtain

gradS Dq peq
q22dp1E E V~y,z!dp~x,z!dx dzD50W .

~2.12!

It is easy to see that this equation implies Eq.~2.10! with
l50 for dp5 f . We can recover Eq.~2.12! conducting an-
other type of stability analysis based on the second-or
variation of theH functional in Sec. III.

We note that thedp given by Eq.~2.11! does not always
satisfy the condition

E E dp~x,y!dx dy50, ~2.13!

which is necessary for probability conservation. According
relevant eigenfunctions withl50, which is related to the
occurrence of bifurcations, have to be given by Eq.~2.12!
satisfying the condition~2.13!.

H theorem

The behavior of the approach ofp(t,xW ,yW ) to the equilib-
rium solution can also be examined with the help of anH
theorem as in the case of one-dimensional DNFP
@14,15,31#.

We define the free energy functional as

F„p~• !…5U2DS ~2.14!

wherep(x,y) denotes a probability density and
U5E E f~x,y!p~x,y!dx dy1
1

2 E E V~y,z!p~x1 ,y!p~x2 ,z!dx1dx2dy dz

5E E Ff~x,y!1E E V~y,z!p~x,z!dx dzGp~x,y!dx dy2
1

2 E E V~y,z!p~x1 ,y!p~x2 ,z!dx1dx2dy dz, ~2.15!

S5
1

q21 F12E E pqdx dyG . ~2.16!

Substituting the solution of Eq.~2.1! into Eq. ~2.14! @i.e., p5p(t,x,y)], we differentiateF with respect tot. Using Eqs.
~2.1! and ~2.2! we have
8-4
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dF„p~ t,• !…

dt
5E E FV„x,y,p~ t,• !…1

Dq

q21
p~ t,x,y!q21G]p~ t,x,y!

]t
dx dy

5E E FV1
Dq

q21
pq21GF2

]

]x S 2
]V

]x
p2D

]

]x
pqD2

]

]y S 2
]V

]y
p2D

]

]y
pqD Gdx dy. ~2.17!

We defineRp(t,x,y) together withb so as to satisfy the following equations:

V„x,y,p~ t,• !…5
DqbRp~ t,x,y!q2121

~12q!b
, ~2.18!

E E Rp~ t,x,y!dx dy51. ~2.19!

The unique existence of suchb can be confirmed if theV„x,y,p(t,•)… as a function ofx and y is bounded from below
@30,31#.

Performing integration by parts, we rewrite Eq.~2.17!:

dF„p~ t,• !…

dt
52E E F ]

]x S V1
Dq

q21
pq21D G S ]V

]x
p1D

]

]x
pqDdx dy

2E E F ]

]y S V1
Dq

q21
pq21D G S ]V

]y
p1D

]

]y
pqDdx dy

52S Dq

q21D 2E E pF H ]

]x
~pq212Rp

q21!J 2

1H ]

]y
~pq212Rp

q21!J 2Gdx dy. ~2.20!
n
ig
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r
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Accordingly, we have

dF„p~ t,• !…

dt
<0, ~2.21!

where equality sign holds under the condition

pq212Rp
q215const. ~2.22!

We note here that Eqs.~2.20! and~2.21! hold true even in
the case withq.1, where the domain for the integratio
involved may happen to be subjected to the so-called h
energy cutoff to become time dependent. This is because
may safely assume that on the domain boundary the p
ability currents~2.3! and ~2.4! vanish.

If the free energyF is bounded from below, inequality
~2.21! implies that for large timesp(t,x,y) approachesRp ,
because noting Eq.~2.19! the above condition holds only fo
p5Rp .

Hence the equilibrium probability densitypeq(x,y) must
be determined from the self-consistent equation~2.6! as de-
scribed earlier.

It is noted that one can no longer expect uniqueness of
equilibrium densitypeq(x,y), since the above self-consiste
equation, in general, admits multisolutions. Which of tho
multisolutions is relevant and is approached from an app
priately given initial condition has to be determined by t
stability condition. In other words, there may occur bifurc
tion phenomena involving stability switches, when cont
parameters such asD are changed.
05611
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To conduct local stability analysis@14,15,31#, we expand
F aroundpeq,

dF[F~peq1dp!2F~peq!5d~1!F@dp#1d~2!F@dp,dp#

1¯ . ~2.23!

Noting Eq. ~2.13! and differentiatingF with respect top
one has

dF5
Dq

q21 E E ~pq212Rp
q21!dp dx dy. ~2.24!

DifferentiatingF twice yields

2d~2!F5DqE E ~pq22dp2Rp
q22dRp!dp dx dy.

~2.25!

SincedRp satisfies

E E V~y,z!dp~x,z!dx dz52DqRp
q22dRp

2
1

12q

d

dp S 1

b D ,

~2.26!

which is obtained by differentiating Eq.~2.18!, we have
8-5
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2d~2!F5DqE E pq22~dp!2 dx dy

1E E E E V~y,z!dp~x,y!dp~x8,z!dy dz dx dx8.

~2.27!

Puttingp5peq in Eqs.~2.24! and ~2.27!, one obtains

d~1!F@dp#5
Dq

q21 E E ~peq
q212Rp

q21!dp dx dy50,

~2.28!

2d~2!F@dp, dp#

5DqE E peq
q22~dp!2 dx dy

1E E E E V~y,z!dp~x,y!dp~x8,z!dy dz dx dx8.

~2.29!
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We can also derive the eigenvalue equation associ
with the second-order variation~2.29!, which will be studied
in the following section.

III. STABILITY ANALYSIS AND EIGENVALUE
EQUATION

To further develop stability analysis based on the seco
order variation~2.29! of theH functional for a more realistic
situation, we deal with a higher-dimensional case of
NFPE ~2.1! that has physical variablesxW and uW denoting,
respectively, the space coordinate and velocity in the thr
dimensional physical space. We consider a certain interac
potentialV that is supposed to act between particles.

Denoting by p(t,uW ,zW) the probability density to find a
particle at a state with space coordinatexW and velocityuW in
the six-dimensional configurational space at timet, we con-
sider the time evolution of the probability density to be giv
by the following NFPE:
]p~ t,uW ,xW !

]t
5 (

k51

3 H 2
]

]uk
S 2

]f

]uk

p~ t,uW ,xW !D 1D
]2

]uk
2 p~ t,uW ,xW !qJ

1 (
k51

3 H 2
]

]xk
F S 2

]f

]xk

2E ]

]xk

V~xW ,zW !p~ t,uW ,zW !duW dzW D p~ t,uW ,xW !G1D
]2

]xk
2 p~ t,uW ,xW !qJ , ~3.1!
lar
n
-

sis
er
whereV represents an arbitrary function that is chosen
pending on models one considers and the multiple integr
represented by an abbreviated expression of using the s
integral. Thef may express another potential giving rise
an external force or some others. An interesting case, h
ever, will be the one where we take the potentialf to be the
kinetic energyf(uW ,xW )5 1

2 uW 2. In this case the system gov
erned by Eq.~3.1! will turn out to correspond to a mean-fiel
model with generalized thermostatistics for particles intera
ing via the interaction potentialV, which will be studied by
takingV to be the gravitational potential in the later sectio
In what follows in this section, however, we do not assu
any particular form forf andV. We see that the variablesx
andy in Eq. ~2.1! of the preceding section are replaced w
uW andxW , respectively, in the above DNFPE.

As in the case of the DNFPE~2.1!, we obtain formally an
equilibrium density

peq~uW ,xW !5$~Dqb!21@12b~q21!V„uW ,xW ,peq~• !…#%1/~q21!

~3.2!

with

V„uW ,xW ,p~ t,• !…5f~uW ,xW !1E V~xW ,zW !p~ t,uW ,zW !duW dzW

~3.3!
-
is
gle

-

t-

.
e

With the free energy functional constructed in a simi
way as in Eq.~2.14!, theH theorem of the preceding sectio
holds also for the NFPE~3.1!. Then, the second-order varia
tion reads

2d~2!F@dp, dp#

5E G~uW ,xW ,wW ,zW !dp~uW ,xW !dp~wW ,zW !duW dwW dxW dzW ~3.4!

with

G~uW ,xW ,wW ,zW !5V~xW ,zW !1Dq peq
q22~uW ,xW !d~wW 2uW !d~zW2xW !.

~3.5!

We proceed further to develop the local stability analy
of the NFPE~3.1! on the basis of the above second-ord
variation of the free energy functional.

Considering the condition fordp

E dp~uW ,xW !duW dxW50, ~3.6!

we put
8-6
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dp~uW ,xW !5(
i 51

3
]Ai~uW ,xW !

]ui
1(

i 51

3
]A31 i~uW ,xW !

]xi
[div AW ~uW ,xW !, ~3.7!

whereAi(uW ,xW ) ( i 51, . . . ,6)denote arbitrary functions that vanish foruuW u→` anduxW u→` or on the boundary of the domai
one is considering.

Then performing integration by parts we have

E V~xW ,zW !dp~uW ,xW !dp~wW ,zW !duW dwW dxW dzW5E V~xW ,zW !S (
i 51

3
]A31 i~uW ,xW !

]xi
D S (

j 51

3
]A31 j~wW ,zW !

]zj
D duW dwW dxW dzW

5 (
i j 51

3 E ]2V~xW ,zW !

]xi]zj
A31 i~uW ,xW !A31 j~wW ,zW !duW dwW dxW dzW ~3.8!

and also

E Dq peq
q22~uW ,xW !d~wW 2uW !d~zW2xW !dp~uW ,xW !dp~wW ,zW !duW dwW dxW dzW5 (

i j 51

3

DqE ~ I i j
~1!1I i j

~2!1I i j
~3!1I i j

~4!!duW dwW dxW dzW

~3.9!

with

I i j
~1!5F ]2

]ui]wj
@peq

q22~uW ,xW !d~wW 2uW !d~zW2xW !#GAi~uW ,xW !Aj~wW ,zW !,

I i j
~2!5F ]2

]ui]zj
@peq

q22~uW ,xW !d~wW 2uW !d~zW2xW !#GAi~uW ,xW !A31 j~wW ,zW !,

I i j
~3!5F ]2

]xi]wj
@peq

q22~uW ,xW !d~wW 2uW !d~zW2xW !#GA31 i~uW ,xW !Aj~wW ,zW !,

I i j
~4!5F ]2

]xi]zj
@peq

q22~uW ,xW !d~wW 2uW !d~zW2xW !#GA31 i~uW ,xW !A31 j~wW ,zW !. ~3.10!

Defining Tkl (1<k,l<6) as

Tkl5Dq
]2

]uk]wl
@peq

q22~uW ,xW !d~wW 2uW !d~zW2xW !#, 1<k,l<3,

Tkl5Dq
]2

]uk]zl 23
@peq

q22~uW ,xW !d~wW 2uW !d~zW2xW !#, 1<k<3, 4< l<6,

Tkl5Dq
]2

]xk23]wl
@peq

q22~uW ,xW !d~wW 2uW !d~zW2xW !#, 4<k<6, 1< l<3,

Tkl5
]2

]xk23]zl 23
@Dq peq

q22~uW ,xW !d~wW 2uW !d~zW2xW !1V~xW ,zW !#, 4<k,l<6, ~3.11!

we have

2d~2!F@dp,dp#5E (
k51 l 51

6

Tkl~uW ,xW ,wW ,zW !Ak~uW ,xW !Al~wW ,zW !duW dwW dxW dzW. ~3.12!

Accordingly the eigenvalue equation associated with the above quadratic form takes the form
056118-7
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(
l 51

6 E Tkl~uW ,xW ,wW ,zW !Al~wW ,zW !dwW dzW5lAk~uW ,xW !, k51, . . . ,6. ~3.13!

By performing integration by parts, the above equation can be rewritten as follows:

2
]

]uk
@Dq peq

q22~uW ,xW !div AW ~uW ,xW !#5lAk~uW ,xW !, k51, . . . ,3 ~3.14!

2
]

]xk23
FDq peq

q22~uW ,xW !div AW ~uW ,xW !1E V~xW ,zW !(
l 54

6
]Al~wW ,zW !

]zl 23
dwW dzWG5lAk~uW ,xW !, k54, . . . ,6. ~3.15!

By multiplying both hands of Eq.~3.14! and Eq.~3.15! by ]/]uk and ]/]xk23 , respectively, and summing them up w
obtain

2D~uW ,xW !@Dq peq
q22~uW ,xW !div AW ~uW ,xW !#2DxWE V~xW ,zW !(

l 54

6
]Al~wW ,zW !

]zl 23
dwW dzW5l div AW ~uW ,xW !, ~3.16!

where

D~uW ,xW ![(
k51

3
]2

]uk
2 1 (

k51

3
]2

]xk
2 , DxW[(

k51

3
]2

]xk
2 . ~3.17!

Putting

div AW ~uW ,xW ![g~uW ,xW ! ~3.18!
-

e

on,

ei-

lue
and noting

E div AW ~uW ,xW !duW 5E (
k51

3
]Ak13~uW ,xW !

]xk
duW , ~3.19!

Eq. ~3.16! can be rewritten as

2D~uW ,xW !@Dq peq
q22~uW ,xW !g~uW ,xW !#

2DxWE V~xW ,zW !g~wW ,zW !dwW dzW5lg~uW ,xW !, ~3.20!

which should be solved under the condition

E g~uW ,xW !duW dxW50 ~3.21!

to find the eigenvalues.
It is noted that Eq.~3.20! must be supplemented by an

other condition that is required to ensure Eqs.~3.14! and
~3.15! on the basis of Eq.~3.20!, because we have taken th
divergence operation in deriving Eq.~3.16!. It will read

grad~uW ,xW !@Dq peq
q22~uW ,xW !g~uW ,xW !#

1gradxW E V~xW ,zW !g~wW ,zW !dwW dzW→0 ~3.22!

whenuW ,xW approach the domain boundary whereAW (uW ,xW ) van-
ishes.
05611
As an interesting application of the eigenvalue equati
we can consider the case whereV is given by the gravita-
tional potential

V~xW ,zW !5
2k

uxW2zWu
~3.23!

with k denoting a positive constant, for which

DxWS 2k

uxW2zWu D54pkd~xW2zW !. ~3.24!

Then Eq.~3.20! takes the form

2D~uW ,xW !@Dq peq
q22~uW ,xW !g~uW ,xW !#24pkE g~wW ,xW !dwW

5lg~uW ,xW !. ~3.25!

As in the preceding section, we can obtain a similar
genvalue equation by linearizing the DNFPE~3.1! . It will be
straightforward, by noting the counterpart~2.10! for the DN-
FPE of the preceding section, to write down the eigenva
equation:
8-8
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2l f ~uW ,xW !5Dq peqD~uW ,xW !@peq
q22f #1peqDxWE V~xW ,zW ! f ~uW ,zW !duW dzW1Dq~grad~uW ,xW !peq!

3@grad~uW ,xW !~peq
q22f !#1~gradxWpeq!S gradxWE V~xW ,zW ! f ~uW ,zW !duW dzW D . ~3.26!
r.
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We now have two eigenvalue equations~3.20! and~3.26!
for our DNFPE~3.1!, which seem to differ from each othe
The eigenfunction with 0 eigenvalue, however, should be
same, because the 0 eigenvalue is related to the fixed p
solution of the DNFPE as well as the stability switch of t
system. We indeed observe that this is the case. When we
l50 in the eigenvalue equations~3.14! and ~3.15!, we ob-
tain

graduW~peq
q22g!50, ~3.27!

Dq gradxW~peq
q22g!1gradxW E V~xW ,zW !g~uW ,zW !duW dzW50.

~3.28!

Accordingly, combining the above equations and the
genvalue equation~3.20! with l50,

D~uW ,xW !@Dq peq
q22~uW ,xW !g~uW ,xW !#1DxWE V~xW ,zW !g~wW ,zW !dwW dzW

50, ~3.29!

which originally has been derived from Eqs.~3.27! and
~3.28!, we can easily see that Eq.~3.26! with l50 holds for
g5 f .

The eigenvalue equations~3.20! and ~3.26! are six-
dimensional integropartial differential equations and hard
solve, since the standard method of separation of varia
does not work.

To obtain a more easy-to-solve simplified eigenva
equation with a reduced number of variables, for exam
working with space variables alone it will be necessary
confine ourselves to a certain subspace in which the pe
bationdp is considered for the second-order variation~3.4!
of the Liapunov functional.

IV. EIGENVALUE EQUATION IN TERMS OF THE SPACE
VARIABLES

In view of the fact that the equilibrium density takes t
form ~3.2!, we assume the perturbationdp to be given by

peq1dp5†~Dqb̃ !21@12b̃~q21!$V„uW ,xW ,peq~• !…

1dG~xW !%#‡1/~q21!, ~4.1!

where b̃ denotes the normalization constant anddG(xW ) an
arbitrary function. Then it follows
05611
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dp~uW ,xW !52~Dq!21peq
22qS dG~xW !2

*peq
22qdG~xW !duW dxW

*peq
22qduW dxW D .

~4.2!

We note that the assumption of Eq.~4.1! may be related to
that of quasiequilibrium for the distribution of velocity.

We define the followings:

m~xW ![~Dq!21E peq
22q~uW ,xW !duW , ~4.3!

m0[E m~xW !dxW , ~4.4!

z~xW ![m~xW !dG~xW !2
m~xW !

m0
E m~xW !dG~xW !dxW . ~4.5!

Substituting Eq.~4.2! into the second-order variatio
~3.4!, we obtain

2d~2!F5E 1

m~xW !
z~xW !2dxW1E V~xW ,zW !z~xW !z~zW !dxW dzW.

~4.6!

It is noted that

E z~xW !dxW50. ~4.7!

Repeating a similar line of reasoning in the derivation
Eq. ~3.20! for the reduced second-order variation~4.6! with
Eq. ~4.7!, we straightforwardly obtain the following eigen
value equation:

2DF 1

m~xW !
z~xW !G2DE V~xW ,zW !z~zW !dzW5lz~xW !. ~4.8!

The eigenvalue equation withl50 is of particular con-
cern. Puttingl50 into Eq.~4.8! one obtains

2D@dG~xW !#2DE V~xW ,zW !m~zW !

3S dG~zW !2
1

m0
E m~yW !dG~yW !dyW DdzW50.

~4.9!

It is worth noting that the above equation is the same
what is obtained by substituting Eq.~4.2! into the original
0-eigenvalue equation~3.29!. This implies that the eigen
function with 0 eigenvalue of the original eigenvalue equ
8-9
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tion ~3.29! can be given by the perturbation~4.2! and then it
suffices to solve Eq.~4.9!. The occurrence of such a situatio
can also easily be understood by noting Eq.~3.27!. When
l50, Eq. ~3.27! implies thatpeq

q22dp is independent of the
velocity variables and hence becomes a function of only
space coordinates as given by Eq.~4.2!.

V. APPLICATION TO A MEAN-FIELD MODEL
OF THE SELF-GRAVITATING SYSTEM

To observe effectiveness of the eigenvalue equation
tained in Sec. IV for somewhat realistic physical model,
deal with a mean-field model of the self-gravitating syst
whose energy is given by Eq.~1.10! under the canonica
ensemble approach and apply the formulation of stab
analysis of the previous sections. To this end we considef
to represent the kinetic energy

f~uW ,xW !5 1
2 uW 2 ~5.1!

and V(xW ,zW) the gravitational potential~3.23!. Then the en-
ergy U in Eq. ~2.15! coincides with that of the self
gravitating system:U5Etot . Taking S to be the Tsallis en-
tropy of the form~2.16!, we now see that finding the loca
minima of the free energyF5Etot2DS of the self-
gravitating system with respect to the densityp(uW ,xW ) corre-
sponds to solving the stable equilibrium solutions to our D
FPE ~3.1!, which is associated with that entropy, owing
the H theorem that ensures monotonic decreasing of thF
with time. We note that the use of Tsallis entropy makes
system polytropic@48# and enables one to deal with a se
confined state of the system.

We also note that the astrophysical relevance of the D
FPE ~3.1! to the dynamical evolution equation of the se
gravitating particles is beyond the scope of this paper
remains a future problem, because the right hand side of
~3.1! includes the diffusion in position space.

To make the paper self-contained, some of the w
known established results of the equilibrium properties of
polytropes are reproduced before presenting the result
application of the stability analysis in the mean-field mod
part of which was already reported in Ref.@54#. Confining
ourselves only to a self-confined state to assumeq.1, we
rewrite the equilibrium density~3.2! of the DNFPE as

peq~uW ,xW !5A~q,D !@2 1
2 uW 22Geq~xW !1B~q,b!#1/~q21!,

~5.2!

where

A5S q21

Dq D 1/~q21!

, B5
1

~q21!b
, ~5.3!

Geq~xW !52kE peq~uW ,zW !

uxW2zWu
duW dzW52kE r~zW !

uxW2zWu
dzW ~5.4!

with

r~xW !5E peq~uW ,xW !duW . ~5.5!
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Substitution of Eq.~5.2! into Eq. ~5.5! gives

r~xW !5A4pCS 1

q21D @B2Geq~xW !#3/211/~q21! ~5.6!

with

C~m!5E
o

A2
h2S 12

1

2
h2D m

dh ~5.7!

which can be defined form.21.
The reason for assumingq.1 comes from the require

ment of convergence ofxW integration ofpeq(uW ,xW ): Since it is
expected from Eq.~5.4! thatGeq(xW )→0 asuxW u→`, assuming
0,q,1 in Eq.~3.2! leads to the divergence ofxW integration
of peq. On the other hand, choosingq.1 can avoid such
divergence of thepeq by making the domain ofxW integration
for peq limited to a certain bounded domain of the thre
dimensional space for which thepeq is well defined. To be
more specific, withq.1 we consider thepeq(uW ,xW ) to be
defined for the domain satisfying

2 1
2 uW 22Geq~xW !1B>0, B,0 ~ i.e., b,0!, ~5.8!

for which integration with respect toduW dzW is meant to be
performed. Then the domain ofxW integration allowed be-
comes uxW u<r c with B2Geq(uxW u5r c)50 if, for simplicity,
spherical symmetry ofG(xW ) can be assumed. In other word
we can say that the bounded domain wherepeq.0 has been
naturally introduced according to our prescription based
the high energy cutoff.

Taking the Laplacian of Eq.~5.4! one obtains the Poisso
equation

DGeq~xW !5kE 4pd~xW2zW !r~zW !dzW54pkr~xW !. ~5.9!

When we can assume thatGeq(xW ) andr(xW ) have spherical
symmetry, Eq.~5.9! becomes

1

r 2

d

dr S r 2
d

dr
Geq~r ! D54pkr~r !. ~5.10!

Substituting Eq.~5.6! one obtains

2FA4pCS 1

q21D G2v 1

r 2

d

dr S r 2
d

dr
rvD54pkr

~5.11!

with

v5
2~q21!

3q21
, ~5.12!

which is a well known equation in the polytrope gas syst
@44,49–52#. Thev is the inverse of the polytrope indexn:
v51/n @51,52#. The equilibrium density should be given b
solving this second-order differential equation under
boundary conditions, which read
8-10
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d

dr
rvU

r 50

50, ~5.13!

d

dr
rvU

r 5r c

52kF4pACS 1

q21D Gv 1

r c
2 . ~5.14!

Equation~5.13! arises from the condition that the solutio
to Eq. ~5.11! must satisfy the hydropressure balance con
tion for the equilibrium density@44,49–52#.

Equation ~5.14! follows from the normalization of the
probability density. We further impose the condition that o
system be subjected to the high energy cutoff atr 5r c based
on the choice of the nonextensive index ofq.1 for Tsallis
statistics,

r~r c!50, ~5.15!

which determines the value ofr c .
It is often more convenient to deal with a scaled non

mensional equation of Eq.~5.11!. Putting as

r~r !5r0r̃~j!, r 5r 0j, ~5.16!

where

r 0
25

1

4pk FA4pCS 1

q21D G2v

r0
v21, ~5.17!

Eq. ~5.11! can be rewritten as

1

j2

d

dj S j2
d

dj
p̃vD52 r̃, ~5.18!

which should be solved under the boundary condition th

r̃~0!51,
d

dj
r̃vU

j50

50. ~5.19!

In general, ther0 as an integration constant can be det
mined by the normalization condition by assuming that
integration of the originalr(r ) is limited to the interval
@0,h#. Then the condition corresponding to Eq.~5.14! reads

r 0
3r0E

0

h/r 0
4pj2r̃~j!dj51 ~5.20!

or equivalently

24pr 0r0h2
d

dj
r̃vU

h/r 0

51, ~5.21!

which givesr0 and r 0 as a function ofh. In our case we
consider thath5r c . Hence ther c is to be determined from a
special valuejc5r c /r 0 satisfying

r̃~jc!50. ~5.22!

A family of solutions r̃v satisfying Eq.~5.18! together
with the boundary condition~5.19! is called the Emden so
05611
i-
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lution @44,49–52#. It is known that for the polytrope index
n51/v,5, the solution rapidly decreases to vanish at a
nite value ofj, satisfying Eq.~5.22!, whereas forn51/v
.5 the solution decays slowly only to vanish atj5`.

We now turn to study the eigenvalue problem of this s
tem. To examine whether there occurs a stability change w
the appearance of 0 eigenvalue for the equilibrium den
satisfying Eq.~5.11!, we solve Eqs.~3.27! and~3.28! to find
eigenfunctions. Equation~3.27! together with Eq.~3.21!
turns out to be satisfied by solutions of the form~4.2!.

Substituting thedp(uW ,xW ) in Eq. ~4.2! into the eigenvalue
equation~3.28!, one obtains the equation fordG(xW ):

gradFdG~xW !1E V~xW ,zW !m~zW !

3S dG~zW !2
1

m0
E m~yW !dG~yW !dyW DdzW G50.

~5.23!

Multiplying Eq. ~5.23! by the divergence operator, one o
tains

DxWdG~xW !14pkm~xW !S dG~xW !2
*m~xW !dG~xW !dxW

*m~xW !dxW D50,

~5.24!

wherem(xW ) defined by Eq.~4.3! is explicitly given by

m~xW !5
1

v F4pACS 1

q21D Gv

r12v. ~5.25!

Equation~5.24! coincides with Eq.~4.9!.
Here we assume a spherical symmetric solutiondG(xW )

5R(r ). Then we have from Eq.~5.24!

S ]2

]r 2 1
2

r

]

]r DR~r !14pkm~r !

3S R~r !2
*0

r cm~r !R~r !4pr 2dr

*0
r cm~r !4pr 2dr D 50.

~5.26!

Putting

R̄~r !5R~r !2
*0

r cm~r !R~r !4pr 2dr

*0
r cm~r !4pr 2dr

, ~5.27!

Eq. ~5.26! can be rewritten as

d

dr S r 2
d

dr
R̄~r ! D524pkm~r !r 2R̄~r !, ~5.28!

E
0

r c
m~r !R̄~r !4pr 2dr50. ~5.29!

Equation~5.28! is a second-order linear differential equ
tion for R̄(r ) and has two linearly independent solutions.
8-11
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On the other hand, Eq.~5.23! can be rewritten as

d

dr
R̄~r !524pk

1

r 2 E
0

r

m~r !R̄~r !r 2dr, ~5.30!

which is the original 0-eigenvalue equation to be solved
der the condition~5.29!. Differentiating this equation recov
ers Eq.~5.28!. Hence we obtain the boundary condition th
Eq. ~5.28! has to satisfy:

r 2
d

dr
R̄~r !U

r 50

50. ~5.31!

Accordingly, one has to solve the second-order linear
ferential equation~5.28! under the condition of Eqs.~5.29!
and ~5.31! to find 0 eigenvalue.

We can easily find one of the solutions to Eq.~5.28! as

R1~r !5
1

4pr 2m~r ! F d

dr
@4pr 3r~r !#1a4pr 2r~r !G

5vFA4pCS 1

q21D G2vF ~a13!rv1
r

v

d

dr
rvG

~5.32!

with

a5
123v

v21
5

3q25

q11
, ~5.33!

which can be confirmed by a direct substitution into E
~5.28!.

General solutions to Eq.~5.28! can easily be obtained b
putting R̄(r )5t(r )R1(r ). The result is

R̄~r !5R1̄~r !S c11c2E
1

r dr

r 2R1̄
2D . ~5.34!

Noting Eq.~5.13!, we can easily check that boundary co
dition ~5.31! implies c250. So theR1(r ) is the desired so-
lution to the legitimate 0-eigenvalue equation~5.30!. Hence
it will suffice to consider this solution to see whether t
normalization condition~5.29! is satisfied or not. However, i
does not satisfy Eq.~5.29! for aÞ0, since noting Eq.~5.15!
one has@54#

E
0

r c
m~r !R1~r !4pr 2dr5E

0

r c
a4pr 2r~r !dr5a,

~5.35!

which yields 0 only whenv5 1
3 . This will imply that mar-

ginal stability occurs only ata50 because of the imposing o
the condition~5.15! and that there occurs no critical poin
corresponding to the stability change for the equilibriu
density with a change in such a control parameter asD. We
note that the valuev5 1

3 is well known in the stability prob-
lem of the polytropes@55#.
05611
-

t

f-

.

If, instead, one imposes a different boundary conditio
say, a rigid boundary condition where the particles are c
tained in a sphere with radiush to consider the variationa
problem for the free energy~2.14! or ~3.4!, one would be
able to expect a phase transition to occur. Indeed, the co
tion ~5.29! yields

4ph3r~h,h!52a, ~5.36!

where we have specifiedh dependence ofr. This implies
that whena.0, namely,1

3 ,v, 2
3 , no stability change oc-

curs. On the other hand, whena,0 (0,v, 1
3 ), stability

change may occur ath5h* satisfying Eq.~5.36!. A detailed
analysis of the normalization condition~5.21! reveals that
udr0/dhu→` ash approachesh* from above and also that
pair of equilibrium probability densitiesr r 0.r

0*
(r ,h) (h*

<h,`) andr r 0,r
0*
(r ,h) (h* <h<r c) are allowed to exist

for h>h* , where r 0* 5r 0(h* ). Stability exchange occurs
between two branches ath5h* . We cannot determine from
the marginal stability analysis alone stability of the equili
rium densities. However, for the case witha.0 the equilib-
rium density can be considered to be stable, because
second-order variation of the free energy functional~4.6!
evaluated in the neighborhood ofh50 takes positive values
~see the Appendix! and no stability change occurs. In th
case of a,0, the branch of equilibrium densitie
r r 0,r

0*
(r ,h) containing the self-confined one is expected

exhibit instability due to the marginal stability ata50 for the
case withh5r c.

Conclusively, the system witha.0 ~i.e., q. 5
3 ), which

exhibits an equilibrium density undergoing the high ener
cutoff ~i.e., self-confined state!, is stable irrespective of val
ues of temperatureD @54#. This result recovers the recen
ones obtained by means of different methods@56,57#.

VI. SUMMARY AND DISCUSSION

We have extended the double nonlinear Fokker-Pla
equations~DNFPEs! of the mean-field type, which were pro
posed previously to study bifurcation phenomena within
framework of Tsallis thermostatistics, to include a multid
mensional case with velocity and space coordinates. Tak
the mean-field coupling kernel to be of a general form,
have developed stability analysis to obtain the eigenva
equations based on two different types of approaches.
DNFPEs have been shown to exhibit anH theorem based on
the H functional taking the form of free energy. We hav
analyzed the second-order variation of theH functional to
derive one of the eigenvalue equations. Assuming quasie
librium for the velocity distribution, the reduced eigenvalu
equation with space coordinates alone is also obtained.
other eigenvalue equation has been obtained by the stan
method of linearizing the original DNFPEs around the eq
librium density. As far as the 0 eigenvalue is concerned,
have shown that the eigenvalue equation associated with
second-order variation of theH functional implies the one
obtained from linearization of the DNFPEs.

Taking the mean-field coupling kernel and another pot
tial function involved in the DNFPE to be the gravitation
8-12
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potential and the kinetic energy of particles, respectively,
have applied the DNFPE having the three-dimensional
locity and position space coordinates together with the re
of stability analysis to study the mean-field model of t
self-gravitating system.

The eigenfunctions with 0 eigenvalue have been found
be exhaustively given by the reduced eigenvalue equatio
position variable. We have examined the marginal stability
obtain the condition for the occurrence of stability change
the equilibrium density given as the Emden solution. As
as the equilibrium density undergoing the high energy cu
is concerned, no stability change occurs with changes of
coefficient of the nonlinear diffusion termD that plays the
role of temperature.

Furthermore, the obtained condition determining stabi
change shows the existence of a critical value ofv5 1

3 cor-
responding to the marginal stability ata50 such that forv
. 1

3 no stability change occurs even when the rigid bound
condition is deliberately imposed in which the particles a
contained in a sphere with radiush. When, on the other
hand,v, 1

3 , at a certain critical value ofh marginal stability
occurs in accordance with the occurrence of a saddle-n
type bifurcation and the equilibrium densities are allowed
exist only for above the critical value of radius. By evalua
the second-order variation of the free energy functiona
the small limit of radiush, we have found that the equilib
rium density with1

3 ,v, 2
3 is stable for anyh that must be

smaller than the automatically introduced cutoff radius ba
on Tsallis themostatistics. In particular, the self-confined s
tem with 1

3 ,v, 2
3 ~i.e., q. 5

3 ) is stable irrespective of val
ues of temperatureD.

A few remarks worth noting are in order. Stability issu
of the DNFPEs that exhibit anH theorem may simply be
studied on the basis of the analysis of the second-order v
tion of theH functional by making full use of theH theorem.
Indeed, in the case of the DNFPEs where the mean-fi
coupling kernel is given by the ferromagnetic coupling, w
previously showed that just computing the second-or
variation of theH functional suffices to observe the occu
rence of stability change as well as to determine stability
an equilibrium density. There it is not necessary to inve
gate the eigenvalue equation. This situation is in sharp c
trast to the present system, where the eigenvalue equa
plays an important role to determine the stability of the eq
librium solution. The difference arises from the type of t
mean-field coupling kernelV.

In the case of the ferromagnetic coupling kernelV(y,z)
52Jyz or V(y,z)5(J/2)(y2z)2, diagonalizing the
second-order variation can easily be performed to extract
relevant part responsible for the determination of stabi
@15,31,32#. The phase transition point where stability chan
occurs corresponds to the appearance of 0 eigenvalue.
can be easily checked by using one-dimensional versio
Eq. ~3.28! @54#.

We note here that the 0-eigenvalue equation itself, in g
eral, can be found from the knowledge of the manifold of t
stationary probability density without resorting to the eige
value problem.

We have employed the DNFPE approach in the study
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stability of the polytropes, which is essentially based on
canonical ensemble within the context of Tsallis thermos
tistics. The reason for dealing with the DNFPE is as follow
Such NFPEs as shown by Eq.~1.1! give an equilibrium so-
lution that exhibits the usually known thermodynamic re
tion of the Legendre form structure as shown by Eqs.~1.6!
and ~1.7!. It is because of such a relation as well as t
dynamical level definition~1.4! of the free energyF that the
diffusion parameterD may be interpreted as properly define
temperature and the definition of theF turns out to be appro-
priate in the generalized thermostatistics. Hence several
eralizations of classical results of statistical mechanics m
become possible to make sense. In this respect, NFPEs
DNFPEs that are derived from the formal extension of F
from theq51 case can be compared to the generalization
entropy proposed by Tsallis. Furthermore, the application
the DNFPE to the mean-field model of the self-gravitati
system is based on the very fact that stability issues of
DNFPE and the self-gravitating particles of canonical e
semble approach can be equivalently related with each o
via the free energy for which theH theorem of the DNFPE
holds. The equilibrium phase space distribution function
the self-gravitating system hence coincides with that of
DNFPE and its marginal distribution of position variable d
velops polytropic nature.

In general, when the equilibrium distribution function of
system is given for studying its statistical behavior, it is oft
convenient to consider a certain dynamical equation of
probability distribution~a kind of master equation! which
converges to that equilibrium distribution for large time
particularly in the case of systems exhibiting bifurcation ph
nomena. Numerical simulations of the master equation
often be used not for examining the temporal behavior
just simply for observing the equilibrium properties.

When supposing such a situation, it is considered t
physical meaning and astrophysical relevance of the NF
itself does not matter. Studying this sort of thing is beyo
the scope of this paper and remains a future problem.

The static problem of the mean-field model of the se
gravitating system might be considered on the basis of
free energy~2.14! alone without introducing the DNFPE
once the parameterD is viewed as temperature. The adva
tage of considering the DNFPE will, however, be that t
principle of minimizing the free energy can be understo
dynamically as the stability issue of the convergence of
equilibrium probability density for large times, although th
microscopic foundation of the DNFPE remains an op
problem @61#. More specifically, one can easily solve th
marginal stability ~0-eigenvalue problem! by only dealing
with the manifold corresponding to the fixed point solutio
of the NFPE. The eigenvalue equation obtained by linear
tion of the DNFPE will also make sense. Furthermore, fro
the viewpoint of numerical simulations, the equilibriu
probability density subjected to the high energy cutoff can
naturally considered as appearing from an initial probabi
density that has in general no such high energy cutoff.

We have taken advantage of incorporating the cutoff
dius corresponding to the high energy cutoff for the equil
rium probability density withq.1 by employing Tsallis
8-13
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thermostatistics of first choice based on the nonexten
generalized entropy. Ther c has been shown to be give
within the equilibrium theory, which does not require th
introducing of a rigid boundary condition that is usua
taken. To avoid the infinite mass problem that would oc
under the use of Boltzmann entropy, we may employ ot
forms of entropy that bring about a power-law-type equil
rium density responsible for the high energy cutoff. The
exist many such entropies, each of which determines a
responding NFPE such that the free energy involving t
entropy decreases with time~H theorem! @54#. For example,
we can take a NFPE@30# that is obtained from the Sharm
and Mittal entropy@58#, instead of the Plastino-Plasino-typ
NFPE @25#, to consider a DNFPE leading to a different fre
energy for the self-gravitating system. This corresponds
the third choice of Tsallis thermostatistics@43#. In this sense,
generalized thermostatistics cannot be determined uniqu

Regarding stability of the equilibrium probability densi
of the Emden-type solution~5.16! of the self-gravitating sys-
tem, its global stability will not be ensured, although theH
theorem given by Eq.~2.1! holds. This is because the lowe
boundedness of theH functional is not shown. The free en
ergy may decrease without bound in order for the system
settle into the collapsed state, where the probability is c
centrated to one~center! point.

Comparing our result of stability analysis with the o
obtained previously in the microcanonical ensemble
proach@52#, we note that the condition for stability in term
of the free energy minimum is more stringent than that ba
on the maximum entropy recipe with the energy constra
This is because the local minimizing of the free energy i
plies the local maximizing of the entropy under the co
straint of the energy. The present result shows that the cri
value ofv5 1

3 ~inverse of the polytrope index! above which
stability follows without exhibiting stability change is large
than that ofv5 1

5 for the corresponding phase for the micr
canonical ensemble approach@52#. This supports the abov
argument, which implies that the stability region inferr
from the free energy condition should be contained by t
from the entropy condition, if a phase diagram in terms ov
andh is drawn.

After completing the present work the author came
know some recent works by other researchers on the rel
subject of polytropes@56,57,59,60#. Chavanis@56,59#, and
Taruya and Sakagami@57# studied the canonical ensemble
the polytropes independently of our work to obtain the sa
eigenvalue equation as the one in the present paper as f
the marginal stability of the eigenvalue equation in terms
the position variables is concerned. The result that the p
tropic gas withv. 1

3 exhibits stability is in agreement with
the results of Chavanis@56,59# and of Taruya and Sakagam
@57#. Chavanis’s method in Ref.@56# is different from ours
and is based on the dynamical equations involving Eu
equation together with the polytropic equation of state.
discussed the difference between the marginal value ov
5 1

3 obtained dynamically and that ofv5 1
5 obtained by

Taruya and Sakagami@52# in the microcanonical ensemble
and emphasized the need for studying the canonical
semble using a properly chosen free energy to compare th
05611
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This has been indeed done in Refs.@59,57#. Furthermore,
Chavanis noted, on the basis of the inspection of his o
result in view of Tsallis entropy, that in spite of the differen
between the distribution of velocities of the polytropic g
and the equilibrium phase space distribution implied by Ts
lis entropy, some connection between the dynamical stab
and generalized thermodynamic stability may be expec
The result of the present paper might partially answer t
question: The marginal stability of the polytropes can be
termined by the reduced eigenvalue equation of the posi
variable, where the information on the distribution of veloc
ties is masked.

In Ref. @60# Chavanis, Rosier, and Sire studied the th
modynamics and the collapse of a self-gravitating gas
Brownian particles in the high-friction limit to make a dire
relation between the dynamics and the thermodynamics f
the viewpoint of the standard statistical mechanics based
the Boltzmann-Gibbs entropy. They dealt with the Smo
chowski equation combined with the Poisson equation~SP
system! and showed that the SP system satisfies a form oH
theorem and the eigenvalue problem for linear stability o
stationary distribution is connected to the eigenvalue pr
lem for the second-order variations of the thermodynam
potentials taken asH functions. Their case corresponds
q51 of our system. Such a system, however, requires c
finement of gas particles, where the interesting problem
the gravitational collapse can be expected, to avoid the i
nite mass problem and will differ much from the model
the present work dealing with the self-confined case.

In our approach the canonical ensemble is systematic
given by elucidating the function of the parameterD playing
the role of temperature, which is implied by the thermod
namic relation of the Legendre transform structure and thH
theorem for the DNFPE. Furthermore, the present appro
taken in deriving the eigenvalue equations from the seco
order variation of the free energy to investigate the stabi
issue of the polytropes is more systematic in that the
phase space variables are taken into account and the u
the reduced eigenvalue equation in terms of position v
ables can be justified for the issue of the marginal stabili

The detailed analysis of the stability issue of the Emd
solution including the phase diagram and the comparis
with other works will be presented elsewhere.

APPENDIX

To observe the behavior of the second-order variation
the free energy functional~4.6! in the neighborhood ofh
50, we first compute Eq.~4.6! by assuming that the varia
tion z(xW ) has the rotational symmetry. One can easily obt

2d~2!F5E
0

h 1

m~r ,h!
z~r !2 4pr 2dr2kE

0

h
dr4pr 2

z~r !

r

3S E
0

r

4ps2z~s!ds1r E
r

h
4psz~s!dsD . ~A1!

Considering Eq.~4.7! we put
8-14
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4pr 2z~r !5
]F~r ,h!

]r
, ~A2!

where we have explicitly expressed theh dependence of the
F such that

F~0,h!5F~h,h!50. ~A3!

Then it is straightforward to obtain

2d~2!F5E
0

hF 1

4pr 2m~r ,h! S ]F~r ,h!

]r D 2

2
k

r 2 F~r ,h!2Gdr.

~A4!

We note here that in order for the above integral to
convergent in the smallr, one can assume that

]F

]r
'r s, s. 1

2 . ~A5!

Let r and h be small andF be analytic for simplicity.
Noting Eq.~A3!, we expandF as

F~r ,h!5br2~r 2h!1¯ , ~A6!

whereb is some constant. Using the scaled Emden solu
~5.19! and Eq.~5.25! to rewritem(r ,h), we have

2d~2!F5vFA4pCS 1

q21D G2v

r0
v21E

0

h
r̃S r

r 0
D v21 1

4pr 2

3S ]F~r ,h!

]r D 2

dr2kE
0

hF 1

r 2
F~r ,h!2Gdr. ~A7!
nd

ce

05611
e

n

Whena.0 ~i.e., 1
3 ,v, 2

3 ), it follows from the normal-
ization condition for the equilibrium density~5.20! that in
the limit h→0

r 0→0,
h

r 0
→0, 4ph3r~h,h!54ph3r0r̃S h

r 0
D→3.

~A8!

Noting the above and substituting Eq.~A6! into Eq. ~A7!
we obtain in the limith→0

2d~2!F'vFA4pCS 1

q21D G2vS 3

4p D v21 b2

4p
h23v16

2
1

30
kb2h5. ~A9!

Noting 1
3 ,v, 2

3 , we have in the leading order ofh posi-
tive sign ofd (2)F:

d~2!F'vFA4pCS 1

q21D G2vS 3

4p D v21 b2

4p
h23v16.0.

~A10!

Finally, we note that in the case ofa,0 one cannot take
the limit h→0 in Eq. ~5.20!, which implies that the equilib-
rium density based on the Emden solution does not exist
very small h in the case of imposing the rigid bounda
condition.
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